Promedio móvil ponderado: lo básico Durante años, los técnicos han encontrado dos problemas con el promedio móvil simple. El primer problema radica en el marco temporal del promedio móvil (MA). La mayoría de los analistas técnicos creen que la acción de los precios. El precio de la acción de apertura o cierre, no es suficiente de lo que depender para predecir adecuadamente las señales de compra o venta de la acción de cruce del MA. Para solucionar este problema, los analistas asignan ahora más peso a los datos de precios más recientes utilizando la media móvil suavizada exponencialmente (EMA). Por ejemplo, usando un MA de 10 días, un analista tomaría el precio de cierre del décimo día y multiplicaría este número por 10, el noveno día por nueve, el octavo Día por ocho y así sucesivamente a la primera de la MA. Una vez que se ha determinado el total, el analista dividirá el número por la adición de los multiplicadores. Si agrega los multiplicadores del ejemplo de MA de 10 días, el número es 55. Este indicador se conoce como el promedio móvil ponderado linealmente. (Para la lectura relacionada, echa un vistazo a los promedios móviles simples hacen que las tendencias se destacan.) Muchos técnicos son creyentes firmes en el promedio móvil exponencialmente suavizado (EMA). Este indicador se ha explicado de muchas maneras diferentes que confunde tanto a los estudiantes como a los inversores. Tal vez la mejor explicación viene de John J. Murphys Análisis Técnico de los Mercados Financieros, (publicado por el Instituto de Nueva York de Finanzas, 1999): El exponencialmente suavizado media móvil se ocupa de los dos problemas asociados con el promedio móvil simple. En primer lugar, el promedio suavizado exponencial asigna un mayor peso a los datos más recientes. Por lo tanto, es una media móvil ponderada. Pero si bien asigna menor importancia a los datos de precios pasados, incluye en su cálculo todos los datos en la vida útil del instrumento. Además, el usuario puede ajustar la ponderación para dar mayor o menor peso al precio de los días más recientes, que se agrega a un porcentaje del valor de días anteriores. La suma de ambos valores porcentuales se suma a 100. Por ejemplo, el precio de los últimos días se podría asignar un peso de 10 (.10), que se agrega a los días anteriores peso de 90 (.90). Esto da el último día 10 de la ponderación total. Esto sería el equivalente a un promedio de 20 días, al dar al precio de los últimos días un valor menor de 5 (0,05). Figura 1: Promedio móvil suavizado exponencialmente El gráfico anterior muestra el índice Nasdaq Composite desde la primera semana de agosto de 2000 hasta el 1 de junio de 2001. Como puede ver claramente, la EMA, que en este caso está usando los datos de cierre de precios en un De nueve días, tiene señales de venta definitiva el 8 de septiembre (marcado por una flecha negra hacia abajo). Este fue el día en que el índice se rompió por debajo del nivel de los 4.000. La segunda flecha negra muestra otra pierna abajo que los técnicos esperaban. El Nasdaq no pudo generar suficiente volumen e interés de los inversores minoristas para romper la marca de 3.000. Luego se zambulló de nuevo hasta el fondo en 1619.58 el 4 de abril. La tendencia alcista del 12 de abril está marcada por una flecha. Aquí el índice cerró en 1,961.46, y los técnicos comenzaron a ver a los gestores de fondos institucionales comenzando a recoger algunos negocios como Cisco, Microsoft y algunos de los temas relacionados con la energía. (Lea nuestros artículos relacionados: Sobres de media móvil: Refinación de una herramienta de comercio popular y rebote promedio móvil). Cómo calcular el promedio ponderado Identifique los números que se ponderan. Es posible que desee anotarlos en su papel en forma de gráfico. Por ejemplo, si usted está tratando de averiguar un grado, debe identificar lo que se calificó en cada examen. Identificar los pesos de cada número. Esto es a menudo un porcentaje. Anote el peso junto al número. Los porcentajes son comunes porque los pesos suelen ser un porcentaje de un total de 100. Si está calculando el promedio ponderado de grados, inversiones y otros datos financieros, busque el porcentaje de la ocurrencia de 100. Si está calculando el promedio ponderado De los grados, debe identificar el peso de cada examen o proyecto. Convertir porcentajes en decimales. Siempre multiplique decimales por decimales, en lugar de decimales por porcentajes. Cómo escribir palabras con una calculadora Cómo hacer un truco fresco de la calculadora Cómo desactivar una calculadora de la escuela normal Cómo operar una calculadora científica Cómo establecer lugares decimales en una calculadora TI BA II Plus Cómo acceder a los juegos en su TI 83 Calculadora Cómo Descargar juegos en una calculadora gráfica Cómo obtener la TI 83 en su computadora Cómo convertir un porcentaje en forma decimal con una calculadora Cómo tomar una captura de pantalla de una calculadora gráfica de Texas InstrumentsProblemas promedio ponderado Hay tres tipos principales de problemas comunes comúnmente encontrados En álgebra escolar: Promedio (Media Aritmética). Promedio ponderado y velocidad media. En esta lección, aprenderemos a resolver problemas de promedio ponderado. Problemas promedio ponderado Un tipo de problemas medios implica el promedio ponderado, que es el promedio de dos o más términos que no tienen el mismo número de miembros. Para encontrar el término ponderado, multiplique cada término por su factor de ponderación, que es el número de veces que se produce cada término. La fórmula para el promedio ponderado es: Una clase de 25 estudiantes tomó una prueba de la ciencia. 10 estudiantes tuvieron una media (promedio aritmético) de puntuación de 80. Los otros estudiantes tenían una puntuación media de 60. ¿Cuál es el puntaje promedio de toda la clase? Paso 1: Para obtener la suma de los términos ponderados, multiplique cada promedio por el número de Estudiantes que tenían ese promedio y luego resumirlos. 80 veces 10 60 veces 15 800 900 1700 Paso 2: Número total de términos Número total de estudiantes 25 Paso 3: Utilizando la fórmula Respuesta: La puntuación promedio de toda la clase es 68. Tenga cuidado Usted recibirá la respuesta equivocada si agrega Las dos puntuaciones medias y dividir la respuesta por dos. Videos Los siguientes videos ofrecen más ejemplos de cómo calcular el promedio ponderado. Ejemplo: En un club de salud, 80 de los miembros son hombres y 20 de los miembros son mujeres. Si la edad promedio de los hombres es 30 y la edad promedio de las mujeres es 40, ¿cuál es la edad promedio de todos los miembros? Encuentre el promedio ponderado dado una tabla de frecuencia. Ejemplo: Un grupo de personas fueron encuestadas por cuántas películas ven en una semana. La tabla siguiente muestra el resultado de la encuesta. (A) ¿Cuántas personas participaron en la encuesta? (B) ¿Cuál fue el número total de películas vistas en una semana por todos los encuestados? (C) ¿Cuál fue el promedio de películas vistas en una semana por persona encuestada? 1) ¿Cuántas libras de nueces mezcladas vendiendo por 4,75 por libra se deben mezclar con 10 libras de frutas secas vendiendo por 5,50 por libra para obtener una mezcla de trillos que se vende por 4,95 por libra? 2) Un experimento de química requiere un 30 de sulfato de cobre. Kendra tiene 40 mililitros de solución 25. ¿Cuántos mililitros de solución de 60 debe agregar para hacer una solución de 30? 3) Un coche y una emergencia se dirigen uno hacia el otro. El coche está viajando a una velocidad de 30 mph o 44 pies por segundo. El vehículo de emergencia está viajando a una velocidad de 50 mph o alrededor de 74 pies por segundo. Si los vehículos están a 1000 pies de distancia y las condiciones son ideales, en cuántos segundos la unidad del coche escuchará por primera vez la sirena Girar al formato de pantalla horizontal en un teléfono móvil o una pequeña tableta para usar el widget Mathway, Que responde a sus preguntas con explicaciones paso a paso. Puede usar la calculadora gratuita Mathway y el solucionador de problemas a continuación para practicar Álgebra u otros temas de matemáticas. Pruebe los ejemplos dados, o escriba su propio problema y compruebe su respuesta con las explicaciones paso a paso. OR-Notes OR-Notes son una serie de notas introductorias sobre temas que caen bajo el amplio encabezado del campo de investigación de operaciones (O). Originalmente fueron utilizados por mí en un curso introductorio de OR que doy en el Imperial College. Ahora están disponibles para su uso por cualquier estudiante y maestro interesado en OR sujeto a las siguientes condiciones. Puede encontrar una lista completa de los temas disponibles en OR-Notes aquí. Ejemplos de pronóstico Ejemplo de pronóstico 1996 Examen UG La demanda de un producto en cada uno de los últimos cinco meses se muestra a continuación. Utilice una media móvil de dos meses para generar una previsión de demanda en el mes 6. Aplique el suavizado exponencial con una constante de suavizado de 0.9 para generar una previsión de demanda de demanda en el mes 6. ¿Cuál de estos dos pronósticos prefiere y por qué? El promedio móvil para los meses dos a cinco es dado por: El pronóstico para el mes seis es sólo el promedio móvil para el mes antes de que es decir, el promedio móvil para el mes 5 m 5 2350. Aplicando suavizado exponencial con una constante de suavizado de 0,9 obtenemos: Antes de que el pronóstico para el mes seis sea apenas el promedio para el mes 5 M 5 2386 Para comparar los dos pronósticos calculamos la desviación cuadrada media (MSD). Si hacemos esto, encontramos que para el promedio móvil MSD (15 - 19) sup2 (18 - 23) sup2 (21-24) sup2 / 3 16.67 y para el promedio exponencialmente suavizado con una constante de suavización de 0.9 MSD (13-17) ) Sup2 (18.76 - 23) sup2 (22.58 - 24) sup2 / 4 10.44 En general, vemos que el suavizado exponencial parece dar las mejores previsiones de un mes de anticipación ya que tiene un MSD más bajo. Por lo tanto, preferimos el pronóstico de 2386 que ha sido producido por suavizado exponencial. Ejemplo de pronóstico 1994 UG examen La siguiente tabla muestra la demanda de un nuevo aftershave en una tienda para cada uno de los últimos 7 meses. Calcular una media móvil de dos meses para los meses dos a siete. ¿Cuál sería su pronóstico para la demanda en el mes ocho? Aplicar el suavizado exponencial con una constante de suavizado de 0,1 para obtener una previsión de la demanda en el mes ocho. ¿Cuál de las dos previsiones para el mes ocho prefieres y por qué? El encargado de la tienda cree que los clientes están cambiando a este nuevo aftershave de otras marcas. Analice cómo puede modelar este comportamiento de conmutación e indicar los datos que necesitaría para confirmar si se está produciendo o no esta conmutación. Solución El promedio móvil de dos meses para los meses dos a siete es dado por: El pronóstico para el mes ocho es sólo la media móvil para el mes anterior que es decir, el promedio móvil para el mes 7 m 7 46. Aplicando suavizado exponencial con una constante de suavizado de 0,1 Obtenemos: Como antes de la previsión para el mes ocho es sólo el promedio para el mes 7 M 7 31,11 31 (como no podemos tener la demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,1 En general, vemos que el promedio móvil de dos meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por la media móvil de dos meses. Para examinar la conmutación que tendría que utilizar un modelo de proceso de Markov, donde las marcas de estados y que se necesita información de estado inicial y las probabilidades de conmutación de clientes (a partir de encuestas). Necesitamos ejecutar el modelo en datos históricos para ver si tenemos un ajuste entre el modelo y el comportamiento histórico. Ejemplo de pronóstico 1992 UG examen La siguiente tabla muestra la demanda de una determinada marca de afeitar en una tienda para cada uno de los últimos nueve meses. Calcule una media móvil de tres meses para los meses tres a nueve. ¿Cuál sería su pronóstico para la demanda en el mes diez? Aplicar el suavizado exponencial con una constante de suavizado de 0,3 para obtener una previsión de la demanda en el mes diez. ¿Cuál de los dos pronósticos para el mes diez prefieres y por qué? Solución El promedio móvil de tres meses para los meses 3 a 9 es dado por: El pronóstico para el mes 10 es sólo el promedio móvil para el mes anterior que es decir el promedio móvil para el mes 9 M 9 20,33. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 10 es 20. Aplicando el suavizado exponencial con una constante de suavizado de 0.3 obtenemos: Como antes la predicción para el mes 10 es sólo el promedio para el mes 9 M 9 18.57 19 (como nosotros No puede tener demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,3 En general, vemos que el promedio móvil de tres meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 20 que se ha producido por el promedio móvil de tres meses. Ejemplo de pronóstico 1991 UG examen La siguiente tabla muestra la demanda de una determinada marca de fax en un gran almacén en cada uno de los últimos doce meses. Calcular la media móvil de cuatro meses para los meses 4 a 12. ¿Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,2 para obtener una previsión de la demanda en el mes 13. ¿Cuál de las dos previsiones para el mes 13 Prefiere y por qué ¿Qué otros factores, no considerados en los cálculos anteriores, pueden influir en la demanda del fax en el mes 13 Solución La media móvil de cuatro meses para los meses 4 a 12 está dada por: m 4 (23 19 15 12) / 4 17,25 m 5 (27 23 19 15) / 4 21 m 6 (30 27 23 19) / 4 24,75 m 7 (32 30 27 23) / 4 28 m 8 (33 32 30 27) / 4 30,5 m 9 ( 37 33 32 30) / 4 33 m 10 (41 37 33 32) / 4 35,75 m 11 (49 41 37 33) / 4 40 m 12 (58 49 41 37) / 4 46,25 El pronóstico para el mes 13 es sólo el movimiento Promedio para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 46,25. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 46. Aplicando el suavizado exponencial con una constante de suavizado de 0.2 obtenemos: Como antes la previsión para el mes 13 es sólo el promedio para el mes 12 M 12 38.618 39 (como nosotros No puede tener demanda fraccional). Para comparar los dos pronósticos se calcula la desviación cuadrática media (MSD). Si hacemos esto, encontramos que para el promedio móvil y para el promedio exponencialmente suavizado con una constante de suavizado de 0,2 En general, vemos que el promedio móvil de cuatro meses parece dar el mejor pronóstico de un mes de anticipación, ya que tiene un MSD más bajo. Por lo tanto, preferimos la previsión de 46 que se ha producido por el promedio móvil de cuatro meses. La demanda estacional los cambios de precio de la publicidad, tanto esta marca y otras marcas situación económica general de la nueva tecnología Ejemplo de pronóstico 1989 UG examen La siguiente tabla muestra la demanda de una determinada marca de horno de microondas en un almacén en cada uno de los últimos doce meses. Calcular una media móvil de seis meses para cada mes. ¿Cuál sería su pronóstico para la demanda en el mes 13 Aplicar suavizado exponencial con una constante de suavizado de 0,7 para obtener una previsión de la demanda en el mes 13. ¿Cuál de las dos previsiones para el mes 13 prefieres y por qué? Solución Ahora no podemos calcular una Media móvil de seis meses hasta que tengamos al menos 6 observaciones - es decir, sólo podemos calcular tal promedio a partir del mes 6 en adelante. Por lo tanto, tenemos: m 6 (34 32 30 29 31 27) / 6 30,50 m 7 (36 34 32 30 29 31) / 6 32,00 m 8 (35 36 34 32 30 29) / 6 32,67 m 9 (37 35 36 34 32 30) / 6 34,00 m 10 (39 37 35 36 34 32) / 6 35,50 m 11 (40 39 37 35 36 34) / 6 36,83 m 12 (42 40 39 37 35 36) / 6 38,17 La previsión para el mes 13 Es sólo el promedio móvil para el mes anterior, es decir, el promedio móvil para el mes 12 m 12 38,17. Por lo tanto (como no podemos tener demanda fraccional) el pronóstico para el mes 13 es 38. Aplicando el suavizado exponencial con una constante de suavizado de 0.7 obtenemos: Promedios móviles: ¿Cuáles son? Entre los indicadores técnicos más populares, se utilizan medias móviles para medir la dirección De la tendencia actual. Cada tipo de media móvil (comúnmente escrito en este tutorial como MA) es un resultado matemático que se calcula promediando un número de puntos de datos pasados. Una vez determinado, el promedio resultante se traza en un gráfico para permitir a los operadores ver los datos suavizados en lugar de centrarse en las fluctuaciones de precios cotidianas que son inherentes a todos los mercados financieros. La forma más simple de una media móvil, apropiadamente conocida como media móvil simple (SMA), se calcula tomando la media aritmética de un conjunto dado de valores. Por ejemplo, para calcular una media móvil básica de 10 días, sumaría los precios de cierre de los últimos 10 días y luego dividiría el resultado en 10. En la figura 1, la suma de los precios de los últimos 10 días (110) es Dividido por el número de días (10) para llegar al promedio de 10 días. Si un comerciante desea ver un promedio de 50 días en lugar, el mismo tipo de cálculo se haría, pero incluiría los precios en los últimos 50 días. El promedio resultante a continuación (11) tiene en cuenta los últimos 10 puntos de datos con el fin de dar a los comerciantes una idea de cómo un activo tiene un precio en relación con los últimos 10 días. Quizás usted se está preguntando porqué los comerciantes técnicos llaman a esta herramienta una media móvil y no apenas una media regular. La respuesta es que cuando los nuevos valores estén disponibles, los puntos de datos más antiguos deben ser eliminados del conjunto y los nuevos puntos de datos deben entrar para reemplazarlos. Por lo tanto, el conjunto de datos se mueve constantemente para tener en cuenta los nuevos datos a medida que estén disponibles. Este método de cálculo garantiza que sólo se contabilice la información actual. En la Figura 2, una vez que se agrega el nuevo valor de 5 al conjunto, el cuadro rojo (que representa los últimos 10 puntos de datos) se desplaza hacia la derecha y el último valor de 15 se deja caer del cálculo. Debido a que el valor relativamente pequeño de 5 reemplaza el valor alto de 15, se esperaría ver el promedio de la disminución de conjunto de datos, lo que hace, en este caso de 11 a 10. ¿Qué aspecto tienen los promedios móviles Una vez que los valores de la MA se han calculado, se representan en un gráfico y luego se conectan para crear una línea de media móvil. Estas líneas curvas son comunes en las cartas de los comerciantes técnicos, pero la forma en que se utilizan puede variar drásticamente (más sobre esto más adelante). Como se puede ver en la Figura 3, es posible agregar más de un promedio móvil a cualquier gráfico ajustando el número de períodos de tiempo utilizados en el cálculo. Estas líneas curvas pueden parecer distracción o confusión al principio, pero youll acostumbrarse a ellos a medida que pasa el tiempo. La línea roja es simplemente el precio medio en los últimos 50 días, mientras que la línea azul es el precio promedio en los últimos 100 días. Ahora que usted entiende lo que es un promedio móvil y lo que parece, bien introducir un tipo diferente de media móvil y examinar cómo se diferencia de la mencionada media móvil simple. La media móvil simple es muy popular entre los comerciantes, pero como todos los indicadores técnicos, tiene sus críticos. Muchas personas argumentan que la utilidad de la SMA es limitada porque cada punto en la serie de datos se pondera de la misma, independientemente de dónde se produce en la secuencia. Los críticos sostienen que los datos más recientes son más significativos que los datos anteriores y deberían tener una mayor influencia en el resultado final. En respuesta a esta crítica, los comerciantes comenzaron a dar más peso a los datos recientes, que desde entonces ha llevado a la invención de varios tipos de nuevos promedios, el más popular de los cuales es el promedio móvil exponencial (EMA). Promedio móvil exponencial El promedio móvil exponencial es un tipo de media móvil que da más peso a los precios recientes en un intento de hacerla más receptiva A nueva información. Aprender la ecuación algo complicada para calcular un EMA puede ser innecesario para muchos comerciantes, ya que casi todos los paquetes de gráficos hacen los cálculos para usted. Sin embargo, para los geeks de matemáticas que hay, aquí es la ecuación EMA: Cuando se utiliza la fórmula para calcular el primer punto de la EMA, puede observar que no hay ningún valor disponible para utilizar como la EMA anterior. Este pequeño problema se puede resolver iniciando el cálculo con una media móvil simple y continuando con la fórmula anterior desde allí. Le hemos proporcionado una hoja de cálculo de ejemplo que incluye ejemplos reales de cómo calcular una media móvil simple y una media móvil exponencial. La diferencia entre la EMA y la SMA Ahora que tiene una mejor comprensión de cómo se calculan la SMA y la EMA, echemos un vistazo a cómo estos promedios difieren. Al mirar el cálculo de la EMA, notará que se hace más hincapié en los puntos de datos recientes, lo que lo convierte en un tipo de promedio ponderado. En la Figura 5, el número de periodos de tiempo utilizados en cada promedio es idéntico (15), pero la EMA responde más rápidamente a los precios cambiantes. Observe cómo el EMA tiene un valor más alto cuando el precio está subiendo, y cae más rápidamente que el SMA cuando el precio está disminuyendo. Esta capacidad de respuesta es la razón principal por la que muchos comerciantes prefieren utilizar la EMA sobre la SMA. ¿Qué significan los diferentes días? Las medias móviles son un indicador totalmente personalizable, lo que significa que el usuario puede elegir libremente el tiempo que desee al crear el promedio. Los períodos de tiempo más comunes utilizados en las medias móviles son 15, 20, 30, 50, 100 y 200 días. Cuanto más corto sea el lapso de tiempo utilizado para crear el promedio, más sensible será a los cambios de precios. Cuanto más largo sea el lapso de tiempo, menos sensible o más suavizado será el promedio. No hay un marco de tiempo adecuado para usar al configurar sus promedios móviles. La mejor manera de averiguar cuál funciona mejor para usted es experimentar con una serie de diferentes períodos de tiempo hasta encontrar uno que se adapte a su estrategia. Medios móviles: cómo utilizarlos Suscríbete a las noticias para usar para obtener las últimas ideas y análisis Gracias por registrarte en Investopedia Insights - Noticias para usar.
No comments:
Post a Comment